Math 225 B : Differential Geometry , Homework 7
نویسنده
چکیده
Problem 8.17. (a) Let M and N be oriented manifolds, and let ω and η be an n-form and an m-form with compact support, on M and N , respectively. We will orient M ×N by agreeing that v1, . . . , vn, w1, . . . , wm is positively oriented in (M×N)(p,q) ∼= Mp⊕Nq if v1, . . . , vn and w1, . . . , wm are positively oriented in Mp and Nq, respectively. If πi : M ×N →M or N is projection onto the ith factor, show that ∫
منابع مشابه
Math 225 B : Differential Geometry , Homework 5
Problem 7.8. (a) Let ω ∈ Ω(V ). Show that there is a basis φ1, . . . , φn of V ∗ such that ω = (φ1 ∧ φ2) + · · ·+ (φ2r−1 ∧ φ2r). (b) Show that the r-fold wedge product ω∧· · ·∧ω is non-zero and decomposable, and that the (r + 1)-fold wedge product is 0. Thus r is well-determined; it is called the rank of ω. (c) If ω = ∑ i<j aijψi ∧ ψj, and A is the upper triangular matrix with Aij = aij for i <...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014